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11.1 INTRODUCTION

To understand the importance of geostatistics for the assessment, monitoring
and remediation of groundwater pollution it is necessary to consider the
importance of geostatistics in hydrology and more generally the transition from
a purely deterministic approach for such problems to a stochastic one. The
simplest form of Darcy's equation for subsurface flow, valid in an isotropic
medium with no source or sink is given by

d1ox(Kodlox)=0:i=1,...,k (11.1)

where K is hydraulic conductivity, ¢ is hydraulic head and k is the dimension of
the flow domain. In its original form, K is assumed to be a constant. With
current computing capability it is also possible to allow K to be a smooth
function. A stochastic version of the system is obtained by letting Y=1In K be
a Gaussian process. Even with this assumption the parameters of the process
must be estimated and K is usually only known at a finite number of locations.
As the emphasis shifted from resource development to groundwater pollution
problems (Smith, 1981; Freeze et al., 1989; Neuman, 1993 Kitanidis, 1995),
the spatial variability of hydrogeological parameters became more important.
Heterogeneity in the subsurface induces fluctuations in flow velocities and in
turn dispersion of solutes is enhanced. Whether deterministic or stochastic
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226 Geostatistics in hydrology problems

models are used, geostatistics is useful for characterizing and modelling the
spatial variability of the relevant parameters such as hydraulic conductivity;
porosity, permeability and dispersivity.

In trying to apply deterministic models there were at least two perceived
obstacles:

¢ an inadequate understanding of the processes
o inefficient methods for solving the equations

The differences encountered in different environments; porous media vs.
fractured rock, the unsaturated zone vs. the saturated zone, gave impetus to the
growth of an interest in the use of stochastic models in the 1970s. Previously the
use of statistics was limited to empirical statistical models and inappropriate
where the physical and chemical processes of subsurface hydrology were well
defined. However there are at least three practical problems associated with the
use of stochastic models (Kitandis, 1995):

¢ estimation and inference of parameters, such as hydraulic conductivity from
head observations

¢ determination of theeffect of uncertainty in parameters vs. the uncertainty in
the head or flow

o compensating for a change in scale.

These problems are all exacerbated by heterogeneities in the subsurface.

11.1.1 Heterogeneity

One of the serious problems that occurs in the use of deterministic models is the
incorporation of the heterogeneity that occurs in the subsurface, both in the
geology and in the hydrological parameters, particularly hydraulic conductivity.
This induces perturbations in the velocities of the groundwater and hence
large-scale dispersion of contaminants, this dispersion is not predictable using
deterministic models. This heterogeneity exits at multiple scales; in the labora-
tory, in the field and finally regionally. One solution is to use ‘effective’ values,
whcih are essentially spatial averages. Most often these must be empirically
determined for each application which are then used for the parameters in the
flow and advection equations. It will usually be necessary to use zonal models
and these will be scale dependent. Zonal models create problems in the face of
non-stationarities. Anderson (1995) and others have proposed the use of site-
specific hydrogeological facies models. A hydrogeological facies is a ‘homogene-
ous but anisotropic unit that is hydrogeologically meaningful for the purposes of
field experiments and modelling’. Some work has been done on the use of
variograms to characterize facies, Anderson (1995) has suggested the possibility
of each facies type having a distinctive variogram. However it is not clear that
the family of variograms is sufficiently rich for this purpose.
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11.1.2 Stochastic modelling

There are two general methods for incorporating geostatistics into the use of
stochastic models; one involves the computation and use of ‘effective’ parameter
values and the other uses simulation. Darcy’s equation (isotropic medium,
steady state with no sources or sinks), relates hydraulic head (the dependent
variable) to hydraulic conductivity (the independent variable). In a zonal model,
hydraulic conductivity is treated as a constant (perhaps an ‘effective’ value) for
each of several zones and the equation is solved separately for each. In
a continuum model, hydraulic conductivity is allowed to vary and is often
modelled as a log-Gaussian process but the parameters of this statistical model
are generally unknown and must be modelled from data, moreover the ‘scale’ of
the data is a crucial aspect of the problem. By the use of Monte Carlo methods
(conditional or unconditional simulation, to be discussed later), multiple realiza-
tions of the hydraulic conductivity field are generated and Darcy’s equation is
solved for each one separately. The statistical parameters of hydraulic conduc-
tivity have a crucial impact on the variability of hydraulic head.

Even if hydrological parameters are assumed constant, or at least constant
over a zone, the values must generally be estimated from data and most often
from sparse data. This means there will be some uncertainty associated with the
estimated values; this uncertainty is generally scale dependent. If the parameters
are not constant but rather are modelled by a stochastic process then there will
be uncertainty associated with the choice of the model as well as with the values
of the parameters in the model. Particularly in this case, the data is ‘spatial’
(often three-dimensional) and usually exhibits some degree of spatial correlation
and spatial variability. This is one of the reasons for the importance of geo-
statistics in hydrology and groundwater pollution problems.

Hydraulic head and hydraulic conductivity are not the only variables of
interest; concentrations of contaminants, rates of spread of a plume, direction of
spread of a plume, boundaries of a plume, as well as other hydrological param-
eters such as porosity, permeability, transmissivity and specific capacity are all
relevant. Some are related by state equations and others are not.

11.2 THE TOOLS
11.2.1 Univariate
Before considering the ‘tools’ it is necessary to consider some of the characteris-

tics of the data. First of all, each data value is associated with a point or a volume
in space. In geostatistical terminology the latter is the ‘support’ of the data

(essentially the same as the support of a measure). In some cases a value

associated with a volume represents an average over the volume but in others it
is only related to the measurement process. Let x denote a point in k-dimensional
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space, v(x) a ‘volume’ or area centered at x and Z(x) a random function
representing the variable of interest such as hydraulic conductivity; then

Zo = l/vJZ(x)dx (11.2)

is a linear functional with support v. A change in the ‘Support’ will most likely
result in a change in the statistical characteristics and most of the state
equations do not explicitly incorporate the support. Some parameters can not be
directly measured but instead must be inferred from other measurements, there
may be different techniques for use in the laboratory than in the field. It is
usually convenient to decompose Z(x) as follows:

Z(x)=m(x) + Y(x) + e(x) (11.3)

where m(x) is the mean function (usually modelled as a linear combination of
known linearly independent functions such as monomials in the position
coordinates), Y(x) is a zero-mean random component satisfying some form of
stationarity and characterized by a spatial structure function such as the
variogram or (auto)covariance function. Finally ¢(x) is the noise or error term
and is considered to be spatially uncorrelated and uncorrelated with Y(x). m(x)
can be interpreted as the regional variation and Y(x) the local variation. Y(x) is
intrinsically stationary if

E[Y(x+h)—Y(x)]=0 for all x,h (11.4)
y(h) =0.5 Var[Y{(x+ h) — Y (x)] (11.5)

exists for all x, h and depends only h.
In the case where Y(x) is second-order stationary, its covariance C(h) is
related to the variogram y (h) by

7 (h) = C(0) — C(h) (11.6)

The modelling of the variogram or covariance is the most difficult problem in
geostatistics. Whereas covariance functions must satisfy a positive-definiteness
condition, variograms must satisfy a negative conditional definiteness condition
both to ensure that the estimation variance is non-negative and also to ensure
that the system of equations has a unique solution, see Myers (1988b).

The estimation or prediction of a value at a non-data location using data at
irregularly spaced locations is the simplest problem. Journel (1986), Cressie
(1986, 1988), Myers (1991c, 1994a, b) provide overviews on the analysis of
spatial data. Neuman (1984) presents an application to log,, T (x) where T (x) is
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transmissivity; the data are from the Avra Valley aquifer near Tucson, Arizona.
Ifx,..., x, denote data locations and x, a non-data location then in the case
where m (x) is constant and ¢(x) =0, Z(x,) is estimated by

Zr(x) = Y, AZ(x) (11.7)
where the ;s are obtained as the solution of the system

Y Ay —x)+pu=y(x,—x); j=1....n (11.8)

i=1..n

These are known as the ‘ordinary kriging’ equations and Z*(x,) will be a BLUE
where the estimation variance is computed using the variogram, the minimized
value is called the kriging variance. Both the estimator and the system of
equations are easily modified to allow a non-constant m(x) , non-zero ¢(x) and
the use of non-point data as well as for the estimation of non-point values. In the
latter case the right-hand side terms in equation (11.7) are replaced by

y(V,X,.)=(1/V)J‘ 7(x—x)dx. (11.9)

v

In this latter case the system in (11.8) is known as the ‘block kriging’ equa-
tions. Two kinds of non-linear transformations are commonly used in geo-
statistics; logarithmic and indicator. The logarithmic is particularly useful in the
case of a multivariate log-Gaussian distribution. The indicator transform is
given by

I(x;z)=1 if Z(x)<z and O otherwise (11.10)

Usually several different cut-off levels are used. The indicator transform has
several advantages, the transformed data is less sensitive to outliers and in
addition to point or areal average estimation one can estimate the proportion of
a region where the variable is above (or below) a specified cut-off. This is
especially useful for determining the need for remediation. Let V be a volume
and

O(V:z) =(1/V)f I(x; z)dx (11.11)

v

Then ®(V; z) is the proportion of V where Z(x)<z. Since E{I(x;~z)}=
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P(Z(x) < x} under a stationary assumption E{I(x:z)} can .l?e thought of
a ‘global’ distribution whereas the estimate of I(x,;z) conditional on data
I(x;; 2z),i=1,...,nis a local conditional distribution. Both ®(V; 2) and I(x,; z)
can be estimated in the same way as Z(x,) except that the variograms must be
modelled on transformed data. An advantage of the indicator transform over the
logarithmic transform is that in general it is not necessary to re-transform.
Various authors have used indicator variograms to model facies. Journel (1983,
1984) and his students are responsible for much of the work on the application
of the indicator transform in geostatistics.

11.2.2 Multivariate

As noted above there are multiple hydrogeological parameters, all of which are
spatially variable. These are usually intervariably correlated as well. In some
instances data on a correlated variable is used to enhance or replace data on
another variable, in other cases the objective is to estimate or predict several
variables using data on all variables. In both instances data may not be availabl(?
on all variables at all locations (sometimes referred to as the ‘undersampled

problem). Neuman (1984) gives an example using log specific cape.lcity an‘d
log hydraulic conductivity. The general form of the co-kriging estlr'nator is
given in Myers (1982, 1984, 1988a, 1992a, b). Let the various variables of
interest be Z,(x),...,Z,(x) and Zx)=[Z,(x),...,Z,(x)] then the analogue of
11.7 is

Z(x)= Y ZW)T, (11.12)

Y rx—x)T+u=y(x%—x); j=1...n (11.13)

In this case the spatial structure function is matrix valued and must satisfy
a matrix form of negative conditional definiteness. The diagonal entries will be
variograms or covariances, the off-diagonal entries will be one of two different
cross-variograms (one symmetric and the other not) or cross-covariances. Bfan-
Jemaa et al. (1994) use co-kriging for the design of a groundwater monitoring
network. Istok et al. (1993) use co-kriging for direct estimation of contaminate
concentrations as does Myers (1989).
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11.3 SIMULATION

Whatever the algorithm, interpolation smoothes the data and the interpolated
surface shows less spatial variability than the data. Moreover interpolation
provides only one scenario for a given data set but it is often useful to generate
alternative scenarios, i.e, the data is viewed as a non-random sample from one
realization of the random function Z(x) and it can be useful to generate
additional realizations of Z(x). When a random variable is simulated, the
distribution is preserved and hence any parameters. In the case of a random
function one will generally not know the full distribution function and only the
parameters or univariate characteristics of Z(x) can be preserved. Usually this
means the spatial structure function (variogram or covariance), mean and
univariate distribution. Simulation is useful for many kinds of application, if log
hydraulic conductivity is simulated then Darcy’s equation can be solved for each
realization and the solutions averaged. Simulation also provides a tool for
comparing dispersivities measured in the field with those calculated from the
flow and dispersion equations.

11.3.1 Turning Bands Algorithm

Although not used quite as much as before it is useful to first consider the
Turning Bands Algorithm which was first introduced by Journel (1974). Let
W,(x) be a random function defined in 1-space with isotropic covariance
function C,(r) and dP(s) a uniform probability measure on the unit sphere in

k-dimensional space with inner product {x,s ). Each point s on the sphere can be
identified with a ‘direction’, i.e., a unit vector from the centre of the sphere. Then

W(x) = le (x)dP(s) (11.14)

The covariance of W(x) and that of W, (x) are related by an integral equation
which is particularly easy to solve for k= 3, ie.,

d/dr[rc(n] = c,(r) (11.15)

In practice one begins with C(r), the covariance of W (x), finds C,(r) and uses this
to generate multiple copies of realizations of W, (x). The simulated realization of
W(x) is obtained as a discrete approximation to (11.14);

Wix)=a ) W,(x) (11.16)

The constant a is to normalize the variance and usually taken to be (1/q)*°. The
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directions s,,...,s, should be ‘equally’ spaced; in the case of k=3 geometry
intervenes and there are essentially only 15 possible equally spaced directions.
The W, (x)s are usually generated using a Moving Average (box-Jenkins)
algorithrrll. For the case of k = 2 there are two significant differences; one is that
there is no maximum number of equally spaced directions and two, the integral
equation is not as easily solved. This led to the use of spectral covariances
instead, particularly by Gelhar’s group at MIT. The method is described in
Mantoglou and Wilson (1982). Of course even in one dimension one cannot
really simulate an entire realization, i.e., at every point on the line. Instead one
simulates at a finite number of points which leads to the idea of bands ‘turning
in space’. Because the simulated values are obtained as a linear combination of
uncorrelated random numbers, the asymptotic univariate distribution will be
Gaussian and hence it is best to transform to Gaussian before simulation. The
realization can be ‘conditioned’ to the data by simulating a zero-mean
realization and adding to the kriged surface.

11.3.2 L-U or Cholesky decomposition

Since in practice one does not simulate an entire realization but rather only its
values at a finite number of locations (usually on a regular grid), simulation of
the random function reduces to the simulation of a finite number of correlated
random variables and for that one can use the L-U or Cholesky decomposition of
the covariance function. Let y,, . . . .y, be the points on the grid, Cthe covariance
matrix of the Z(y,)....,Z(y,) and CV the upper triangular factor. For w,,...,w;
uncorrelated, mean-zero Gaussian random numbers, CYWT is a vector of
correlated simulated values whose covariance matrix is C, W being the column
vector of the w's. Conditioning by simple kriging can be incorporated into the
simulation stage by augmenting the covariance matrix for the data locations
and between the data locations and the grid points. Again it is best to transform
the data to a Gaussian distribution prior to simulation. Both the Turning Bands
and the L-U Decomposition algorithms have the disadvantage of severe memory
limitations, i.e., a limit on the size of the grid. For L-U decomposition, the practical
limit is on the order of a 30 x 30 grid unless perhaps parallel processing is used.

11.3.3 Sequential Gaussian simulation

One way to avoid the limitations of the two prior algorithms is to exploit the
connection between ‘simple’ kriging and the conditional distribution for
multiple jointly Gaussian distributed random variables. Suppose that Z(x)
is second-order stationary with constant mean m and covariance C(h), then
(11.7) can be written in a slightly different form with a simpler system of
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equations
Z*(XO):m+-—1Z A(Z(x) —m) (11.17)
where the 4;s are obtained as the solution of the system
Y ACR—x)=Clx,—x); j=1,....n (11.18)

It is seen that (11.17) is the conditional expectation under the second-order
stationary, joint Gaussian assumption. Moreover the minimized estimation is
just the conditional variance. Given the data locations and a grid point, use
equations (11.17) and (11.18) to obtain an estimated value and a conditional
variance. Then this conditional Gaussian distribution is sampled to obtain
a simulated value at that grid point. This simulated value is added to the ‘data’
set and the process repeated for a different grid point. The grid points are visited
sequentially, each time a simulated value is obtained by sampling from
a univariate conditional Gaussian distribution. Because of the sequential nature
of the simulation, the memory limitations are much reduced.

11.3.4 Simulated annealing

Simulated annealing is well known as an optimization method but when
combined with the proper cost function and appropriate domain for the cost
function it can be used to simulate a random function. For a given set of grid
points and a given univariate distribution, generate a simulated value at each
grid point by sampling the distribution as many times as there are grid points. In
general this will not result in a realization with the desired spatial correlation but
it can be ‘improved’. The cost function will be a mean square difference between
the desired model variogram y(#) and the sample variogram y* (h) at any given
stage in the ‘annealing’. Select two grid points, compute the objective function

2 [ty =P (11.19)

where h,,....h, are user chosen lag distances. Next select two grid points at
random, interchange the assigned simulated values and recompute the cost
function. If less then retain the interchange and proceed to a new pair of grid
points. If not, then the temperature function is used to determine whether the
interchange is retained. That is, ‘simulated annealing’ is used to minimize the
cost function given in equation (11.19). The practical aspects of using this
algorithm are discussed in Deutsch and Cockerham (1994); Datta-Gupta et al.
(1995) apply the algorithm to a large porosity data set.
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Both the L-U Decomposition and Sequential Gaussian algorithms are easily
extended to the joint simulation of correlated random functions. For th.e
extension of the L-U Decomposition algorithm see Myers (1989). For an appli-
cation of multivariate simulation to flow modeling see Gutjahr et al. (1994).

11.4 PARAMETERS

Hydraulic conductivity is one of the principal, perhaps the most imp(?rtant.
hydrologic parameter for the flow and transport equations. It can be-dlrectly
measured, i.e., inferred, in the field by borehole flow meters or by using slug
tests. Several problems occur; threshold values for flow meters limit _the range.of
possible values of hydraulic conductivity. The support of the data is not efisﬂy
determined and change of support problems are non-trivial as noted later. Dlrfact
measurements can also be made by testing samples in the laboratory which
again leads to change of support problems. Hydraulic conductivity‘can also. be
measured or inferred indirectly from grain size distributions or by facies mapping
as described in Rehfeldt et al. (1992). Smith (1981) uses a proxy variable,
porosity, to infer hydraulic conductivity. ' .

The common assumption of a log-Gaussian distribution and statlonarlty. are
discussed in relationship to the Borden aquifer study by Woodbury and Sud{cky
(1992). Even though this parameter is not spatially constant, one may c0{151der
‘effective’ values for a given volume or region. In general this value is pot
a simple spatial average. Desbarats (1992a, b, 1994) has derived ap apprf)prlate
weighting under different conditions and related these to arlthr.netlc and
geometric means. In particular a radial weighted average is appropriate under
some conditions:

K3’=(1/W)JK“‘(X)/r2(X)dV (11.20)
W= |1/r(x)dv.

Anderson (1995) and Gomez-Hernandez and Gorelick (1989) have pointed out
the non-uniqueness of effective values.

For solute transport, dispersivity is a crucial parameter but there are problems
in reconciling direct measurements with those computed from other parameters
using state equations. In particular there are differences in the computed valu(?s
of the Transverse and longitudinal values when using simulated hydraulic
conductivity fields. These can be compared with direct measurements inferred
from tracer tests, see for example, Rehfeldt et al. (1992). '

Using state equations for flow and dispersion one has a choice between using
inverse modelling for parameter estimation and using interpolation coupled

Contamination concentrations 235

with a lesser number of direct measurements. Doctor and Nelson (1981)
examined this problem in the context of repository characterization. Hoeksema
and Kitanidis (1984) use geostatistical methods to estimate hydraulic conductiv-
ity and transmissivity. Aboufrassi and Marino (1984) use kriging and co-kriging
with transmissivity values for input to flow models.

11.5 CONTAMINANT CONCENTRATIONS

In addition to the modelling of subsurface flow and transport, geostatistics can
be used directly with contaminant concentration data or can be used to combine
hydrological information with concentration data. Different contaminants may
disperse at different rates, influenced by subsurface heterogeneities. The Borden
study provided an opportunity to characterize a site both in terms of hydrology
and in terms of contaminant concentrations. Woodbury and Sudicky (1991)
modelled variograms for the hydrological and transport parameters, Myers
(1989b) used multivariate variograms and co-kriging to characterize the spatial
distribution of multiple contaminants at the Borden site.

Istok et al. (1993) provide a case study in characterizing a polluted soil site,
the deposition resulting from the use of pesticides and pesticide by-products.
Multivariate geostatistical techniques can be useful both because of the expense
of collecting samples (more information is collected at each sample location) but
also because of the expense of analysing the samples which is influenced more
by the number of samples than the number of variates.

Remediation of contaminated groundwater will usually require pumping of
the polluted water, treatment and subsequent replacement. The pumping will
cause the plume to move and it is important to predict and control this move-
ment to avoid undesirable dispersion. Gorelick (1995) used conditional simula-
tion to optimize both well placement and pumping regimes for the removal of
a contaminant plume. This requires a priori modelling of the variogram or
covariance(s).

There can be interest in the concentrations and dispersions of solutes in
groundwater for reasons other than for environmental monitoring or remedi-
ation. Detection and characterization of geochemical patterns either in the soil
or in the groundwater are useful for detecting and identifying ore deposits. Kane
et al. (1982), Myers et al. (1982) and Myers (1988c) demonstrate the use of
variograms, kriging as well as inverse distance weighting, to analyse patterns in
the groundwater that could be indicative of a uranium deposit. This data was
collected as a part of the NURE (National Uranium Resource Evaluation) project
conducted by the US DOE in the mid-1970s and early 1980s.

Perhaps the simplest form of aquifer monitoring only involves monitoring
hydraulic head which in turn can be obtained from Darcy,s equation if the
hydraulic conductivity is known. Both conditional simulation and interpolation
methods such as kriging allow interpolation of hydraulic conductivity from
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a small number of locations to a dense grid which can then be used as the input
for a flow model. This is illustrated in Aboufirassi and Marino (1983) who used
universal kriging, i.e., the mean function m(x) in equation (11.3) is not
constant, and compared those results with results from the use of Trend Surface
Analysis. As shown by Marcotte and David (1988), Trend Surface Analysis is
the same as universal kriging but using a pure nugget (no spatial correlation)
except at the data locations. Ben-Jemaa et al. (1994) used co-kriging to allow the
use of auxiliary variables as proxies for the principal variable of interest.

11.6 SAMPLING DESIGN

There are two aspects of sample design that occur in the application of geo-
statistics; first there is the problem of collecting sufficient data to estimate and
model a spatial structure function as well as to detect and model any non-
stationarities, secondly, after the spatial structure function and mean function
have been modelled they will be used either in kriging or in simulation (or both).
Note that the decomposition given in (11.3) is not uniquely determined by
a finite amount of data”as shown in Myers (1989c). Both for the purpose of
modelling variograms for hydrological parameters and for contaminant concen-
trations it will usually be necessary to drill wells, which is expensive; a sample
design will depend not only on the number of wells but also their locations.
Warrick and Myers (1987) obtained an algorithm for optimizing the frequency
distributions of the squared differences that appear in the sample variogram in
terms of the sample location pattern. The sampling design for variogram
estimation must also be adequate for the detection and characterization of any
anisotropies in the variogram, i.e., directional dependence.

Once the spatial structure function is modelled, it can be used to determine
a sampling plan for data collection for interpolation; in general a plan that is
optimal for estimation and modelling of variograms is not optimal for kriging
even though in many cases the same data set is used for both. There are at least
two techniques for optimizing a sample plan, one involves using the kriging
variance(s) to construct an objective function which is then minimized. This
function will usually not be convex and there may be problems with local
minimums that are not global. This method depends on the fact that the kriging
variance does not depend on the data as such but only on the variogram/
covariance model and the sample location pattern.

As an alternative, the variogram or covariance can be used to generate many
realizations (conditioned to the data). For each realization, one then searches for
an sampling plan optimized with respect to Type I and Type II errors (for
example in the case of environmental characterization). Easley et al. (1991) used
frequency domain simulation of hydraulic conductivity to generate multiple
scenarios. Statistically optimal plans may not always be feasible because of
various practical constraints on sample locations.
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11.7 MODEL-BASED VS. DESIGN-BASED ANALYSES

Geostatistics is a model-based set of techniques and methods yet the model is
driven by and is responsive to the data. Obviously the results are dependent on
the validity of the model(s) used, i.e, on the underlying statistical assumptions.
Although the sample variogram is known to be relatively non-robust with
respect to skewed distributions, the kriging estimators are relatively robust with
respect to changes in the variogram (type and/or parameters). The kriging
estimators are not so robust with respect to skewed distributions, hence one
advantage of the indicator transform. Random sampling, i.e., random sample
location selection, is of very little importance in geostatistics because the model
assumes that there are no replications in the data. Moreover it is assumed that
the regional and local variability is on a much more significant scale than are
any measurement or instrument errors, hence removal of the error term is not
a primary objective as is common in ordinary regression applications.

Although there seem to be few if any applications of the Horwitz—Thompson
estimator in hydrology and groundwater pollution problems, there have been
attempts to relate this estimator to geostatistical methods. de Gruijter and ter
Braak (1990) compare results using the two different approaches. Cordy and
Thompson (1995) show how to use the sample variogram to specify the
reliability of the Horwitz—Thompson estimator.

11.8 LINGERING STATISTICAL PROBLEMS

Even the best statistical tools are dependent on both the quantity and the quality
of the data. In groundwater pollution studies and modelling, data can be both
expensive and difficult to obtain. Asymptotic results are seldom useful because
sample sizes are nearly always small. The laboratory analyses can be quite
expensive and in the case of some organic pollutants there can be problems with
non-detects; this will cause serious problems both in modelling distributions and
also for spatial structure functions. The use of the indicator transform may
partially ameliorate this but will not completely avoid it.

A Gaussian distribution (whether univariate or multivariate) is not necessary
to derive the kriging equations (e.g., equations (11.8), (11.13) and (11.18), as
the kriging estimators are only best linear estimators. Since the data are not
viewed as replications, in the context of the random function model, one must be
careful about using the usual statistical tests for Gaussian distributions since
these in general will assume that spatial distributions are the same as ensemble
distributions. The same kind of problem occurs in examining the validity of
the model for m(x) in (11.3) as well as the heteroscedastic assumption implicit

_in the use of the variogram or covariance. The data can be used to examine

the reasonableness of the assumptions and model but to allow true statistical
testing .
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As has been seen in all of the above, estimation and modelling of the spatial
structure function is a crucial step. The variogram must satisfy two conditions:

=Y ¥ Aiy(x,—x)>0

i=1j=1

for any x,...,x, and any 4,,...,4, (not all zero) such that
A

Y 4=0

i=1

(i) limy(h)/|hP =0.

|h| -0

The failure of the second condition is an indication of non-stationarity. Since it is
not easy to verify these conditions directly, the practical solution is to use
a family of known valid models. These all depend on at least two parameters;
moreover, positive linear combinations of valid models are also valid hence
relatively complicated models can be constructed from this small family.
Although several alternatives to the sample variogram have been and are being
used, modelling the variogram is still partly an art and relies on experience.

There are additional problems when the model is both spatial and temporal as
would be common for the movement of plumes in the subsurface. Most com-
monly used variogram models are isotropic and hence independent of dimen-
sion; a geometric anisotropy can be incorporated essentially as a change in
distance. This approach does not work in the case of spatio-temporal applica-
tions. Some authors constructed spatio-temporal variogram models as a positive
linear combination of a spatial and a temporal variogram; Myers and Journel
(1990), Rouhani and Myers (1990) and Myers (1992a) show that this can lead
to non-invertible kriging matrices.

In the multivariate case, the spatial structure function is matrix valued and
must satisfy a condition similar to (i) above where the As are vectors. Whereas
the diagonal elements must satisfy conditions (i) and (ii), the condition on the
off-diagonal elements is only given in terms of the associated diagonal elements.
The Cauchy-Schwartz condition is necessary but not sufficient when m> 2. The
problem is further complicated by at least two different forms of a cross-
variogram. The most common one is given by

7 () = 0.5 Cov{Z(x+ h) — Z,(x).Z(x + h) — Z(x)}. (11.21)

However, unlike the cross-covariance, y (h) is symmetric, i.e., y,(h) =y,(— h).
Estimation of this cross-variogram requires that data be available on Z(x), Z(x)
at the same locations. The pseudo-cross variogram

9., (h) =0.5Var{Z,(x + h) — Z(x)} (11.22)
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presented in Myers (1991) is not symmetric and does not require data at
common locations but in general is harder to model. It also essentially requires
second-order stationarity rather than the weaker intrinsic stationarity which is
sufficient for equation (11.21). The cross-variogram given in (11.21) or
a symmetric cross-covariance can be used in the Linear Coregionalization Model
(LCM), this is a linear combination of valid variograms (or covariances) where
the coefficients are positive-definite matrices. The validity of the model then is
reduced to verifying that the coefficient matrices are positive definite. The LCM is
based on the idea that each of the random functions Z(x), s=1,...,m can be
written as a linear combination of uncorrelated second-order stationary random
functions Y,(x),..., Y,(x). Writing ¥(x) =[Y,(x),.. Y,(x)] this implies that

Z(x) =[Z,(x),....Z, (0] =[Y,(»),..., Y, (x)]A=Y¥Y(x)A (11.23)

and hence the matrix variogram of Zis given in terms of the matrix variogram of
Y, which is diagonal. In hydrological applications or transport applications
where there are state equations, the cross-covariances can sometimes be derived
from those equations.

Several different simulation algorithms were described above, the choice be-
tween these is usually made on the basis of memory requirements, and speed of
computation rather than on intrinsic characteristics of the simulated random
functions. In particular little is known about the extent to which these are
equivalent or even what equivalence means or should mean. This problem is
discussed in greater detail in Myers (1994c).
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